SADLER UNIT 4 MATHEMATICS METHODS

WORKED SOLUTIONS

Chapter 5 Random sampling

Exercise 5A

Question 1

- **a** Likely to introduce bias.
- **b** Likely to introduce bias.
- **c** Not likely to introduce bias.
- **d** Not likely to introduce bias.
- **e** Not likely to introduce bias.

Question 2

497 in total

Based on percentage:

Age	Number		No. in Committee
<i>x</i> < 20	100	$\frac{100}{497} \times 10$	2
$20 \le x < 30$	154	$\frac{154}{497} \times 10$	3
$30 \le x < 40$	175	$\frac{175}{497} \times 10$	4
$x \ge 40$	68	$\frac{68}{497}$ ×10	1

a Answers will differ but ClassPad instructions are shown

20 rolls $\bar{x} = 2.85$ 30 rolls $\bar{x} = 3.6$ 50 rolls $\bar{x} = 3.34$ 100 rolls $\bar{x} = 3.56$

	mean (ans
	3.9
© Edit Action Interactive	🗢 Edit Action Interactive 🛛 🖂
$\stackrel{0.5}{\clubsuit}_{\frac{1}{2}} \bigcirc \blacktriangleright \int dx] Simp \int dx / \lor \lor \lor \lor$	
randList (20, 1, 6)	randList (30, 1, 6)
{3, 6, 1, 2, 4, 1, 2, 4, 3, 4, 1, 2	{2, 2, 5, 1, 3, 2, 5, 4, 2, 2, 2, 6
mean (ans	mean (ans
2.85	3.6
C Edit Action Interactive	C Edit Action Interactive
	$ \overset{0.5}{\overset{1}{\leftrightarrow}}_{2} \overset{1}{} \overset{1}{} \overset{1}{\swarrow} \overset{1}{} \overset{1}{$
randList(50,1,6)	randList(100,1,6)
$\{1, 2, 2, 2, 6, 6, 5, 3, 3, 4, 2, 5$	{4, 1, 4, 1, 1, 6, 3, 4, 2, 4, 4, 6
mean (ans	mean (ans
3.34	3.56

 \mathfrak{S} Edit Action Interactive

 $\mathfrak{G}_{5,\frac{1}{2}}$ \mathfrak{G}_{1} $\mathfrak{G}_{1,\frac{1}{2}}$ $\mathfrak{G}_{1,\frac{1}{2}}$ $\mathfrak{G}_{1,\frac{1}{2}}$ $\mathfrak{F}_{1,\frac{1}{2}}$

 randList (10, 1, 6)
 \mathfrak{L} List 1

{6,5,4,4,3,3,3,4,6,1}

Question 4

80 students from 1744 in total Year

8	$\frac{420}{1744} \times 80$	≈19.27	19
9	$\frac{407}{1744} \times 80$	≈18.67	19
10	$\frac{389}{1744} \times 80$	≈17.8	18
11	$\frac{270}{1744} \times 80$	≈12.4	12
12	$\frac{258}{1744} \times 80$	≈11.8	12

Question 5

$$\frac{34}{x} = \frac{5}{28}$$
$$x \approx 190 \text{ frogs}$$

Question 6

 $\frac{64}{x} = \frac{7}{83}$ $x \approx 760$

2

$$\frac{123}{x} = \frac{6}{154}$$
$$x = \frac{123 \times 154}{6}$$
$$= 3157$$
$$∴ \approx 3200$$

Question 8

Shane: 12 trials Christine: 150 trials $E(x) = \frac{1+2+...+6}{6}$ ≈ 3.5

 \therefore 3.48 belongs to Christine as she is closest to E(*x*) due to more trials.

Question 9

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	4 5 6 7 8 9 10	11	12

$$E(x) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + \dots + 12 \times \frac{1}{36}$$

= 7

Portia :12 trials Horace :150 trials $\mu_1 = 7.17, \mu_2 = 6.42$ μ_1 is closer to 7 and we expect a simulation with more trials to be closer to E(x). \therefore Horace : 7.17

$$\frac{7}{1345} = \frac{x}{1\ 235\ 067}$$
$$x = 6428$$
$$\therefore 6500 \text{ people}$$

Question 11

Refer to textbook answer.

 $log 100 - ln(e^{-5})$ = 2 - (-3) ln e = 5

$$P = 9e^{(t+1)}$$
$$\frac{P}{9} = e^{t+1}$$
$$\ln\left(\frac{P}{9}\right) = (t+1)\ln e$$
$$\ln\left(\frac{P}{9}\right) = t+1$$
$$t = \ln\left(\frac{P}{9}\right) - 1$$
$$a \qquad t = \ln\left(\frac{100}{9}\right) - 1$$
$$= 1.996$$
$$b \qquad t = \ln\left(\frac{3600}{9}\right) - 1$$
$$= 4.991$$
$$t = \ln\left(\frac{9e^3}{9}\right) - 1$$
$$c \qquad = 3\ln e - 1$$
$$= 2$$

а	log ab = log a + log b = p + q
b	$\log\left(\frac{a}{b}\right)$ $= \log a - \log b$ $= p - q$
С	$= p \cdot q$ $\log(a^{2}b^{3})$ $= \log a^{2} + \log b^{3}$ $= 2\log a + 3\log b$ $= 2p + 3q$
d	$\log \sqrt{a}$ $= \log a^{\frac{1}{2}}$ $= \frac{1}{2} \log a$
е	$= \frac{1}{2} p$ $\ln a$ $= \frac{\log a}{\log e}$ $= \frac{p}{\log e}$
f	$\log_5 b^2$ $= \frac{2\log b}{\log 5}$ $= \frac{2q}{\log\left(\frac{10}{2}\right)}$
	$= \frac{2q}{\log 10 - \log 2}$ $= \frac{2q}{1 - \log 2}$

$$E(X) = np = 60$$

Var(X) = np(1-p) = 36
60(1-p) = 36
1-p = 0.6
p = 0.4
n × 0.4 = 60
n = $\frac{60}{0.4}$
= 150

 $P(X \le 50) = 0.056$

Question 5

 $\frac{dy}{dx} = x \times \frac{1}{x} + \ln 5x \times 1$ $= 1 + \ln(5x)$

Question 6

$$\frac{dy}{dx} = 2(\log_e x) \times \frac{1}{x}$$
$$= \frac{2\log_e x}{x}$$

$$\frac{dy}{dx} = x^2 \times \frac{1}{x} + \ln x \times 2x$$
$$= x + 2x \ln x$$
$$= x(1 + 2\ln x)$$

© Edit Action Interactive	\mathbf{X}				
$ \begin{array}{c} 0.5 \\ \textcircled{1}{2} \\ \swarrow \end{array} \end{array} \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} subarra$	P.				
binomialCDf(0,50,150,0.4)					
0.05553753013					

$$\frac{dy}{dx} = 2(3 + \ln x) \times \frac{1}{x}$$
$$= \frac{2(3 + \ln x)}{x}$$

Question 9

$$\frac{dy}{dx} = \frac{-2}{x^2} + 2 \times \frac{1}{x}$$
$$= \frac{2}{x} - \frac{2}{x^2}$$
$$= \frac{2x - 2}{x^2}$$
$$= \frac{2(x - 1)}{x^2}$$

Question 10

$$y = (\ln x)^{-1}$$
$$\frac{dy}{dx} = -1(\ln x)^{-2} \times \frac{1}{x}$$
$$= \frac{-1}{x(\ln x)^{2}}$$

$$f(x) = x^{3} \ln x$$

$$f'(x) = x^{3} \times \frac{1}{x} + \ln x \times 3x^{2}$$

$$= x^{2} + 3x^{2} \ln x$$

$$f''(x) = 2x + 3x^{2} \times \frac{1}{x} + \ln x \times 6x$$

$$= 2x + 3x + \ln x 6x$$

$$= 5x + 6x \ln x$$

a
$$x = 9\ln(t+1) - 4t$$

 $V = \frac{dx}{dt} = \frac{9}{t+1} - 4 = 0$
 $\frac{9}{t+1} = 4$
 $t+1 = \frac{9}{4}$
 $t = 1.25$
b $a = \frac{dv}{dt} = \frac{-9}{(t+1)^2}$
 $\frac{-9}{(t+1)^2} = \frac{9}{(t+1)} - 4$
By classpad
 $t = -1.75, 2$
 $\therefore t = 2 \ (t \ge 0)$

Question 13

a $\int_{1}^{3} k(4-x) dx$ $= k \left[4x - \frac{x^{2}}{2} \right]_{1}^{3}$ $= k \left((12 - 4.5) - \left(4 - \frac{1}{2} \right) \right)$ = 4k 4k = 1 $k = \frac{1}{4}$ **b** $E(X) = \int_{1}^{3} xf(x) dx$

$$= \int_{1}^{3} \frac{x}{4} (4-x) dx$$
$$= \frac{11}{6}$$

$$C \qquad \text{Var}(X) = \int_{1}^{3} \frac{1}{4} (4-x) \left(x - \frac{11}{6}\right)^{2} dx$$

$$= \frac{1}{4} \int_{1}^{3} (4-x) \left(x - \frac{11}{6}\right)^{2} dx$$

$$= \frac{11}{36}$$

$$d \qquad \text{SD}(X) = \sqrt{\frac{11}{36}}$$

$$= \frac{\sqrt{11}}{6}$$

$$e \qquad \int_{1}^{x} \left(\frac{4-t}{4}\right) dt$$

$$= \int_{1}^{x} \left(1 - \frac{t}{4}\right) dt$$

$$= \left[t - \frac{t^{2}}{8}\right]_{1}^{x}$$

$$= x - \frac{x^{2}}{8} - \left(1 - \frac{1}{8}\right)$$

$$= x - \frac{x^{2}}{8} - \frac{7}{8}$$

$$= \frac{1}{8} (8x - x^{2} - 7)$$

$$P(X \le x) = \begin{cases} 0 & \text{for } x < 1 \\ -\frac{1}{8} (x^{2} - 8x + 7) & \text{for } 1 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

 $\frac{127}{x} = \frac{3}{89}$ $x = 3767\frac{2}{3}$ First estimate 3768 $\frac{127}{x} = \frac{4}{99}$ x = 3143.25Second estimate 3143 $\frac{3768 + 3143}{2} = 3455.5$ Approximately 3500 birds

See textbook answer for suggestions to problems associated with approach.

Question 15

- a F
- b F
- c F
- d F
- e F
- f F
- g F
- h F
- *i* T
- j T
- k T
- *l* T

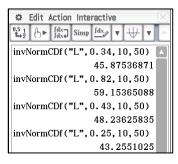
 \therefore Only i, j, k and l are always true.

P(1200 < X < 1300) = 0.0625

Question 17

а	45.9
b	59.2
С	48.2
d	43.3

Question 18


a P(X < 28) = 0.35

28 is 0.385 standard deviations below the mean.

b

$$z = \frac{x - \mu}{\sigma}$$

-0.385 = $\frac{28 - \mu}{5.74}$
 $\mu = 28 + 0.385 \times 5.74$
= 30.21

C Edit Action Interactive				\mathbf{X}		
$\stackrel{0.5}{\clubsuit} \stackrel{1}{2}$	$ \stackrel{0.5}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$					
norr	normCDf(1200,1300,56,1240)					
	0.6204863521					

0	Edit	Action	Inte	ractiv	e			\mathbf{X}
$0.5 \xrightarrow{1}{1}$	₼	∫dx↓	Simp	<u>fdx</u>	Ŧ	₩	V	4
invN	invNormCDf("L", 0.35, 1, 0)							
	-0.3853204664							